Fingerprinting Edge and Cloud Services in IoT

Donglnn Kim
Indiana University Bloomington
Email: dikim@indiana.edu

Abstract—Today, Internet of Things (IoT) devices, web
browsers, phones, and even cars may be fingerprinted for
tracking, and their connections routed through or to malicious
entities. When IoT devices interact with a remote service, the
integrity or authentication of that service is not guaranteed. IoT
and other edge devices could be subject to man-in-the-middle
(MiTM) attacks, with IoT devices attempting to connect to remote
services. It is also straight-forward to use phishing or pharming to
convince a user to accept a connection to a potentially malicious
unfamiliar device. These risks could be mitigated by leveraging
information on the edge of the network about the path to and
destination of a connection. In this work we sample packets,
then use packet analysis and local history to identify risky or
suspicious connections. In contrast to other machine learning and
big data approaches, the use of local data enables risk detection
without loss of privacy.

I. INTRODUCTION

Security is a challenge in the IoT, in home computing, and
for small organizations that rely on IoT and cyber-physical
systems. Due in part to limited processing capacity IoT often
depends upon remote third parties for security. Recent man-
in-the-middle (MiTM) vulnerabilities illustrated both attacks
at nation-state scale [1] and quickly, with a MiTM in just 15
minutes [2]. These attacks illustrate the threats to the security
and privacy of the endpoint relying on the cloud. Defenses
against these attacks often require concentration of data for
machine learning, with levels of data concentration and data
exfiltration that creates its own risk. [3], [4], [5] Our goal is
to secure the connection from an IoT device to identify and
mitigate MiTM attacks without sacrificing users’ privacy has
motivated our research.

We propose to flip the current fingerprinting paradigm so
that devices on the edge collaboratively fingerprint the remote
services, identifying deviations from normal operations. We
illustrate that this is possible by constructing a local agent
built on a raspberry pi called Block-Pi. A second way in
which this is innovative is that Block-Pi provides privacy by
design. The privacy of the date entrusted to the system is
guaranteed by localization, where the filtering and analysis
is implemented between the router and the network. Rather
than sending all personal data out on to the network Block-Pi
polls centralized remote sources of information for blacklists
and model-building, integrating local information to create a
distinct model for each installation. This unique local model
increases the difficulty of blackbox attacks, as an attack on
one network may not function on another. It also allows for
highly customized detection, e.g., homograph detection for

Vafa Andalibi
Indiana University Bloomington
Email: vafandal@iu.edu

L. Jean Camp
Indiana University Bloomington
Email: ljcamp@indiana.edu

small home businesses or individual workplaces for the work
at home employee.

The underlying structure assumes that single point of access
is associated with a set of IoT devices and that those devices
connect to a set of remote services. The model of our proof
of concept includes cloud and Edge service. The proposed
agent described here identifies potentially hazardous changes
in remote services after initial connection, new unfamiliar
connections, and blocks known malicious connections.

We offer a proof of concept of a local agent implemented as
middleware that defends local devices by identifying masquer-
ade and malicious connections using individualized knowledge
and history. Essentially, the goal is to limit the scope of global
trust to that which is locally known. The local agent will not
only route the traffic between the IoT devices and Edge or
cloud services but also fingerprint the access to the remote
services. Our specific example case is not only protecting
IoT devices but also assuring the correct connection to their
edge services. We believe that this is generalizable to cyber-
physical systems, many of which are legacy and have not
internal protection. We discuss the choice of devices further
in limitations as part of discussion.

This paper targets those IoT devices which are less resource-
constrained and have reliable local wireless network connec-
tivity. The devices in our experiments are Google Home, Ring
Doorbell, Belkin Power Plug, and Kangaroo Motion Sensor.
These devices will be capable of providing consistent machine
learning data for the local middleware agent. All of these but
the Kangaroo Motion Sensor have a direct power connection,
it is battery operated.

We describe our motivation in Section II. We then provide
details of the proposal to support the identified contribution
in Section III. Two experiments in early stage are performed
to show the feasibility of the proposed system which are
presented in Section IV. Finally, this is followed by the
conclusions and discussion in Section VI and V.

II. MOTIVATION

Consider an example of hijacking a Belkin Smart Power-
plug. The normal services that the device provides are the
ability to turn on and off the power and to send and receive
the status of the power to its Edge servers in Amazon Web
Services (AWS). The device is configured initially by opening
up its own access point for the WeMo smartphone app in
non-encrypted mode. The WeMo smartphone app allows any
smartphone to connect to this access point and configure the



home wireless network settings into the device. Once the
initial configuration is completed, the device turns off its the
access point and continues to use the home wireless network
to access its Edge services. The smartphone with the WeMo
app configured can control the device by communicating with
the Edge services via the Internet.

The services that the Belkin Smart Powerplug connects to
should be highly limited. Our goal is to characterize not only
the endpoint but the steps to the connection to these limited
acceptable endpoints. Our fingerprinting proof of concept
currently uses Transport Layer Security (TLS) certificates (if
available), Domain Name System (DNS) cache validation,
history of the access, remote IP Autonomous System (AS),
and reference to listing of known malicious entities (e.g.,
PhishTank, SpamHaus, and other blacklists). As the IoT
devices access services, all the features for identifying the
service are collected in the local middleware agent. The local
agent will evaluate the connection request using a cross-layer
comprehensive packet analysis. After an initial packet analysis
is completed, the agent will have two sources of updates and
information: the local home network and the global Internet.
The local agent will use the information from these two
sources to create a customized model to filter suspicious
connections between the IoT devices and the requested sites
or services.

Block-Pi builds on previous work using machine learning;
for example, the work the Maglaras et al. [6] used One Class
Support Vector Machine (OCSVM) as part of a Distributed
Intrusion Detection System (DIDS) to detect MiTM attacks.
However, this required coordinated deployment on three lay-
ers: traffic monitoring from end-user’s network, Edge network,
and on the cloud [7]. This requirement is very difficult to
fulfill since the user does not have access to the manufacturer’s
network and (hopefully for privacy and security reasons) vice
versa.

In addition, MiTM mitigation on Edge networks was iden-
tified as a potential strength of adoption of software-defined
networking (SDN) by Li et al.[8]. The connections in SDN
have flows instead of routers, and the same fingerprinting [9]
approaches we discuss here could be used to evaluate the
flow to the remote service. To the knowledge of authors,
fingerprinting the Edge services has not been used before for
preventing MiTM attacks.

We describe the possible scenarios of an TLS MiTM attack.
Note that the scenario we are providing here was addressed
in fine detail in previous threat analyses [10][11]. The attack
is also illustrated in Figure 1.

In this scenario the attacker hijacks the transport packets
between the Belkin Smart Powerplug and the Edge service in
the same network or in the Internet via the WeMo smartphone
app modification, injection of the forged certificate to the
device firmware, and replicated Edge services in AWS. The
attacker then relays the TLS handshake messages from the
Belkin Smart Plug to its Edge server and vice versa by imper-
sonating it to both sides so that the injected communication
will be delivered to both sides. Finally, the attacker completes

the TLS handshakes with both sides by receiving the shared
symmetric key from the Smart Plug device and then sending
a new symmetric key to the Edge service.

Once the MiTM attack is established the attacker can
interject data, threatening the security and privacy of every
service provided by the Edge. The attacker can damage the
appliances by switching on and off constantly, intimidate the
people whose house is compromised, or use its connectivity to
direct it to DDoS. The risk is exacerbated if the home security
system is powered with the compromised Smart Plug. Since
the firmware of Belkin Smart Plug is shipped with the open
source program, OpenWrt!, it is possible for an attacker to
inject the invalid CA certificate and then bypass the certificate
validation process by modifying the firmware. The attacker
can reverse engineer the WeMo smartphone app by hacking
its apk file [12][13][14][15].

This paper proposes the idea of having a local agent that
monitors all the incoming and outgoing traffics and provides
access to recognized Edge services and issues warnings for
unfamiliar services. We deployed this idea to Raspberry Pi-4
and we call it “Block-Pi” as shown at Fig 2. The assumption
is that there is a vector for risk mitigation or over-ride; and
our design includes an integrated user interaction for the device
with the corresponding app (e.g., Google Home, Ring, WeMo,
Kangaroo Motion Sensor) 2.

Our research question is to see if the collective operations of
an IoT device provide adequate information for fingerprinting
the requests from/to the IoT device in the home. The critical
challenge of this idea is to determine whether or not the
access to the Edge services is safe by analyzing multiple traffic
streams simultaneously.

The innovations of this proposal are 1) the integration of
devices into a single home threat model, 2) the use of multiple
layers to implement a single trust measure for the connections
made by those devices, and 3) the inclusion of out-of-band
information such as the geography of various Autonomous
Systems (AS). One component of the current implementation
is prioritizing local information over global data, hence pro-
tecting the users’ privacy. Using this data, we propose a packet
analysis approach to determine the authenticity and integrity
of the connection. The Block-Pi and Block-Pi Server’s code
and related data are available upon request.

ITIT. IMPLEMENTATION

In this section, we provide details about the different com-
ponents of our proposed system, Block-Pi, as shown at Fig 2,
including the factors that we have considered for designing the
systems, details of the implementation, as well as the system’s
workflow.

A. Design
One of the main assumptions considered in designing the

Block-Pi, is that the local network is composed of the end

'OpenWrt, https://openwrt.org/
2While the human subjects interaction is subject to current research in the
larger research group, it is beyond the scope of this work.



Belkin
Smart Plug

B

Edge

Attacker
Services
(AWS)

Voo

ClientHello

»
»

ClientHello

ServerHello
Certificate(server)
ServerHelloDone

ServerHello
Certificate(server)
ServerHelloDone

ClientKeyExchange ClientKeyExchange

ChangeCipherSpec ChangeCipherSpec
Finished Finished N

ChangeCipherSpec ChangeCipherSpec
Finished Finished

Encrypted(attacker) Encrypted(attacker)

\ 4

A

Fig. 1. TLS MiTM attack scenarios between the Belkin Smart Plug and its
Edge service provider in AWS [10]. The red arrow and text represent the steps
taken by the attacker.

devices that request services from Edge and cloud service
providers. In this context, we consider the requesting devices
as a collection of IoT devices under one administrative do-
main; for example, a set of devices in a home connected to
one hub or a number of devices on a single LAN in a small
business.

Block-Pi collects the following data about the Edge and
cloud service providers by providing the routing services for
the IoT devices.

TLS Certificates (trusted / untrusted / partially trusted)
DNS Cache server (changed / unchanged)

Resolved IP addresses of the Edge service providers
(changed / unchanged)

AS information (changed / unchanged)

WHOIS information (match / mismatch)

PhishTank data (benign / phish)

The overall architecture and concept of using local in-
formation will be familiar with those who have evaluated
cn grams. [16] Block-Pi analyzes connection data, while
¢, grams examines the content itself. Also, Block-Pi also
polls external data sources.

We will review the implementation details of each category
in the next section.

B. Implementation

Block-Pi is implemented as a Java application so that it can
be deployed on any platform that can support Java Virtual
Machine (JVM). A daemon service runs in Block-Pi.

The TLS certificates compiled by device are analyzed using
an iterative machine learning process to classify the validity
of the certificate building on previous work by Zheng et al. in
detecting rogue and phishing certificates [17]. The evaluation
of the certificate uses 42 fields of the X.509 public key
certificate as the machine-learning features. In addition, the
system regularly pinged PhishTank and revocation lists.

Fig. 2. Block-Pi uses Raspberry Pi 4 to setup the external network with its
Ethernet port and to host the access point with its wireless interface

The additional information obtained from revocation and
phishing was used by Block-Pi. The optimized model that we
chose for the TLS certificate classification is Random Forest,
which provided 95% precision and a recall rate above 93% in
the initial proof of concept [17].

All the devices in the home network share a DNS cache
which is the first source of data not only for Berkeley Internet
Name Domain (BIND) but also for site analysis. This local
shared cache is used to determine if there is any unusual
change in the local DNS server. If the IoT devices access a
different DNS server, it would be identified as a suspicious
activity. Block-Pi will notice this change and either notify
the user, block the connection, or increase the weight of this
feature in the future machine learning model, decision tree.

Block-Pi also tracks the IP addresses as well as the tracer-
oute information, i.e. IP address of the routers, for each
provider. If there is any anomaly, it can be a sign of a MiTM
attack. The current packet analysis examines the IP address
and corresponding range. Note that the benign changes in the
traceroute information could be interpreted as a sign of MiTM
attack. In order to minimize such false positive cases, we use
the Autonomous System Number (ASN) routes and we will
show how ASN routes are consistent for the normal activities.
Also, such changes are not as significant as changes in the
DNS server. Changes on provider’s IP address affects only the
related IoT devices, however, changes on DNS cache server
will affect all the IoT devices in the same network, including
Block-Pi.

WHOIS data is a verification factor to see if the Edge
service provider has consistent data in WHOIS. Of course,
the recent changes in WHOIS due to General Data Protection
Regulation (GDPR) have limited the efficacy of this method,
however, network information such as DNS resolver remains
available. The normal re-registration of the domain does not
update many fields in WHOIS. The Registrar information,
including WHOIS Server, URL, Registration Expiration Date,
TANA ID, Abuse Contact Email, and Abuse Contact Address,



Internet

Local
Network

Block-Pi
in a Raspberry-Pi

Fig. 3. Block-Pi architecture to control a small set of IoT devices

may change during the re-registration. Block-Pi keeps the
history of the changes. Large changes in WHOIS information
may be a sign of malicious re-registration. This information
is also used during the initial connection, e.g. if the resolver
is unknown or all associated information is from an AS that
has never been contacted by any of the devices.

As for the PhishTank information, Block-Pi updates the
local PhishTank data by synchronizing with the central Phish-
Tank database every hour. Since the connection to PhishTank
is established with the ASN routes verification, the TLS
certificate, and the connection token, the data from PhishTank
is securely synced to the local PhishTank database. The
PhishTank data can be a reliable determinant of malicious
activity if the resolved IP address of the service provider is in
the PhishTank database.

C. Workflow

Block-Pi has two primary stages for fingerprinting the Edge
services as described at Fig 4. Initially Block-Pi runs the
packet analysis by collecting the network packets transferred
between IoT devices and their Edge services. If there is
any anomaly from the packet analysis step, the anomaly
information is handed over to the next step, ML which is part
of our future work. Otherwise, there is no need to go through
the ML model.

The proposed system works based on the following essential
steps: identification of a new IoT device in the network,
instantiating the initial model, collecting the communication
data of the device, performing the packet analysis from the
collected communication data, training the model, and, peri-
odic retraining. The initial model needs to be prepared with
special care because Block-Pi does not have prior data for the

Random Forest ML to

verify Certificate
. 100
LS
Certificate

Packets

=
<

55

Packet
Analysis

Machine
Learning

SN

\

ASN

Routes Verify Anomaly

Decision Tree
ML to validate the anomaly

among all the network traffics

g

%

Fig. 4. Block-Pi workflow

model of the new device yet. We explain each of these steps
in more details:

First a Universal Unique Identifier (UUID) is generated for
each device. Block-Pi then has an identifier to associate with
each connection as it compiles basic network data (internal
IP address, MAC address, and destination IP address) of each
connection for each device.

Second Block-Pi, functioning as a router and gateway, will
then run with a general model of the network based on the
available information about the local network. Since Block-Pi
sets up its own local DNS server to avoid the outside DNS
poisoning attacks, it will keep another local history of the
resolved IP address. If the connection is encrypted the agent
will analyze the validity of each certificate, classifying it as
trusted, untrusted, or partially trusted. Block-Pi will save this
classifying result.

Third collected communication data are applied to the
packet analysis and Block-Pi finds any anomalies in the current
communication by looking up the existing packet data. The
ASN routes data is one of the main features to determine
the anomaly from the traffic. When there is no prior ASN
history of the IoT device in Block-Pi, it will refer to Block-
Pi Server to retrieve the most commonly used ASN routes
in the neighboring Block-Pis. If there is anomaly during the
packet analysis, the ML customized data are transferred to the
next step. Otherwise, Block-Pi continuously runs the packet
analysis with the collected data.

Fourth over time the device continues to connect, and the
machine learning model will be trained with the collected data.
The preliminary training is grounded in global information,
augmented by centralized information sources. Block-Pi will
send a notification when there is an untrusted result, e.g., the
Edge service provider is in PhishTank or when any evaluation
result (the probability of malicious activity) is greater than
a given threshold (50%). Otherwise, the agent forwards the
request to the Edge service provider.

Newly collected data Block-Pi is combined with the pre-
vious training data, and the model will be updated with the
training data every 24 hours. Standard 10-fold cross-validation



Block-Pi
Server

Block-Pi

Database
Lo

(L TLS Handshake >

(3) ASN Lookup
_—

(2) ASN_Routes.json (3.1) No ASN
—_— ———

(3.2) Save ASN,
_—

5) Most common ASN

- (4) Most common ASN \
ASN_Routes.json <«

Fig. 5. Workflow between Block-Pi and Block-Pi Server

will verify the training results.

Ground truth is considered to come from a few external
trusted sources (e.g., PhishTank) or explicit home owner
interaction® After a model is newly trained, it is locally tested
(recall 10-fold cross validation) using the newly collected data,
yet the previous models are retained. If a local record of a
trusted site is found, for example, to show up in PhishTank, the
model resets to the last working version. Absent model error,
the newly trained model will replace the previous model. The
data compilation will continue, and Block-Pi will continue to
detect malicious activity with the new model.

The initial packet analysis data in Block-Pi is created based
on the IoT devices that we have conducted experiment on so
far (e.g., Google Home, Ring Doorbell, Belkin Smart Plug,
and Kangaroo Motion Sensor). However, when a new IoT
device is added to the Block-Pi network for the first time,
there is no way to identify the validity of the traffic due to
lack of adequate information. We therefore setup a Block-Pi
Server which collects only the ASN routes that each Block-Pi
logs when IoT devices in their network attempt to reach their
Edge services. Note that this approach is still privacy-friendly
since the collected ASN route data do not include any sensitive
information, such as the information about the IoT devices that
Block-Pi monitors, the association of IoT devices with their
services, as well as the type of Edge service that is running
in the destination IP address. The collected ASN routes in
Block-Pi consist of three fields: (a) IP address of Block-Pi,
(b) IP address of the Edge service, and (c) ASN routes to the
IP address of the Edge service.

When Block-Pi sends the ASN routes to Block-Pi Server,
it only sends (b) and (c) because Block-Pi Server finds the
public IP address of the Block-Pi through the TCP connection
as shown in Listing 1 and Fig 5.

When a new IoT device joins a network, the Block-Pi in that
network will communicate with the nearest Block-Pi Server
over HTTPS. The Block-Pi will send to the Block-Pi Server
the new ASN route resulted from the initiated connection of
the new device. The Block-Pi Server will reply with the most

3While the system interaction is a work in progress, one core design goal
is to make security the easy default. Thus a home owner has to choose to
make an explicit decision to take a risk after encountering risk communication
and a inherent delay. Part of the design is to increase the delay just enough
to require a move from fast, instinctive and emotional decision-making to
slower, more deliberative, and more logical decision-making[18].

common ASN route of that destination, which was collected
only from the neighboring Block-Pis.

In addition, when Block-Pi detects an anomaly when com-
paring an ASN route with local history, it will send the new
ASN route to the Block-Pi Server to see if the neighboring
Block-Pis have experienced the same ASN route. Otherwise,
it can be a sign of the malicious activity and it is moved to
the next ML approach to verify its validity of the traffic.

Block-Pi Server will always looks for the most common
ASN routes that has a source IP range that matches the range
(rather than the exact IP address) of the Block-Pi, and a
destination IP address that matches the exact IP address of
the target edge service.

In case Block-Pi Server cannot find any ASN routes from
the neighboring Block-Pis, it should return the exact ASN
route between the destined edge service IP and the exact same
source IP of that exact same Block-Pi.

If no close match was found either, the Block-Pi Server
starts to keep the ASN route entries with the new IP addresses
and returns the original JSON file to Block-Pi as described at
the Fig 6. Note that the communication between Block-Pi and
Block-Pi Server is not kept alive all the times. Block-Pi needs
to connect to Block-Pi Server to receive the most commonly
used ASN routes in the neighboring Block-Pis when a new
IoT device is added to the Block-Pi network.

Security of the Block-Pi Server, including the security of
the communication between the Block-Pi Server and other
Block-Pis, is of significant importance because a compromised
Block-Pi Server can be used for distributing malicious ASN
routes as well as falsifying the fingerprint results of the IoT
devices connected to the Block-Pis. Hence, the HTTPS con-
nection between Block-Pi and Block-Pi Server is setup with
the pre-configured TLS certificate to secure confidentiality and
integrity of the traffic.

D. Classification

Our Block-Pi currently uses a decision tree[19] for the
classification of the fingerprinting because decision tree pro-
vides competitive accuracy in classification and it is very
efficient. Most importantly, we believe that decision tree fits
our application for two reasons: first, it can easily distinguish
and prune unwanted results, and second, it can calculate the
expectation value of our experiment with a high precision, i.e.
lower value of false positives, and recall value. Note that in
our application false negative cases are those where Block-Pi
reports the Edge service as benign while it is in fact malicious.
Conversely, false positive are those where the agent reports a
benign service as malicious. False positives are problematic
because users will reject a system with false alerts. Conversely
we may care more about false negative cases because higher
false negative rate means more undetected attacks.

After each update, the model is improved by maximizing the
recall score. If the new model achieves a worse recall value, it
will be trained again by skipping the last day’s training data.
The new model should also consider maximizing the precision
to reduce the false positive which may cause serious usability



